
Java + XML = JDOM

by Jason Hunter and Brett McLaughlin
co-creators of JDOM

Mountain View Java User's Group
April 26, 2000

Introductions

Jason Hunter
jhunter@jdom.org
K&A Software
http://www.servlets.com

Author of
"Java Servlet Programming"
(O'Reilly)

Introductions

Brett McLaughlin
brett@jdom.org
Metro Information Services
http://www.newInstance.com

Author of upcoming
"Java and XML"
(O'Reilly)

What is JDOM?

• JDOM is the Java Document Object Model

• A way to represent an XML document for easy and
efficient reading, manipulation, and writing
– Straightforward API
– Lightweight and fast
– Java-optimized

• Despite the name similarity, it's not build on DOM or
modeled after DOM
– Although it integrates well with DOM and SAX
– Name chosen for accuracy, not similarity to DOM

• An open source project with an Apache-style license

The JDOM Philosophy

• JDOM should be straightforward for Java programmers
– Use the power of the language (Java 2)
– Take advantage of method overloading, the

Collections APIs, reflection, weak references
– Provide conveniences like type conversions

• JDOM should hide the complexities of XML wherever
possible
– An Element has content, not a child Text node,

which has content (ala DOM)
– Exceptions should contain useful error messages
– Give line numbers and specifics, use no SAX or

DOM classes or constructs

More JDOM Philosophy

• JDOM should integrate with DOM and SAX
– Support reading and writing DOM documents and

SAX events
– Support runtime plug-in of any DOM or SAX parser
– Easy conversion from DOM/SAX to JDOM
– Easy conversion from JDOM to DOM/SAX

• JDOM should stay current with the latest XML
standards
– DOM Level 2, SAX 2.0, XML Schema

• JDOM does not need to solve every problem
– It should solve 80% of the problems with 20% of

the effort
– We think we got the ratios to 90% / 10%

The Historical Alternatives: DOM

• DOM is a large API designed for complex
environments
– Represents a document tree fully held in memory
– Has to 100% accurately represent any XML

document (well, it attempts to)
– Has to have the same API on multiple languages
– Reading and changing the document is non-

intuitive
– Fairly heavyweight to load and store in memory

The Historical Alternatives: SAX

• SAX is a lightweight API designed for fast reading
– Callback mechanism reports when document

elements are encountered
– Lightweight since the document is never entirely in

memory
– Does not support modifying the document
– Does not support random access to the document
– Fairly steep learning curve to use correctly

Do you need JDOM?

• JDOM is a lightweight API
– Benchmarks of "load and print" show performance

on par with SAX
– Manipulation and output are also lightning fast

• JDOM can represent a full document
– Not all must be in memory at once

• JDOM supports document modification
– And document creation from scratch, no "factory"

• JDOM is easy to learn
– Optimized for Java programmers
– Doesn't require in-depth XML knowledge
– Allows easing into SAX and DOM, if needed
– Simple support for namespaces, validation

The Document class

• Documents are represented by the
org.jdom.Document class
– A lightweight object holding a DocType,
ProcessingInstructions, a root Element,
and Comments

• It can be constructed from scratch:

• Or it can be constructed from a file, stream, or URL:

Document doc =
new Document(new Element("rootElement"));

Builder builder = new SAXBuilder();
Document doc = builder.build(url);

The Build Process

• A Document can be constructed using any build tool
– The SAX build tool uses a SAX parser to create a

JDOM document

• Current builders are SAXBuilder and DOMBuilder
– org.jdom.input.SAXBuilder is fast and

recommended
– org.jdom.input.DOMBuilder is useful for

reading an existing DOM tree
– A builder can be written that lazily constructs the

Document as needed
– Other possible builders: LDAPBuilder, SQLBuilder

Builder Classes

• Builders have optional parameters to specify
implementation classes and whether DTD-based
validation should occur.

• Not all DOM parsers have the same API
– Xerces, XML4J, Project X, Oracle (V1 and V2)
– The DOMBuilder adapterClass implements
org.jdom.adapters.DOMAdapter

– Implements standard methods by passing through
to an underlying parser

– Adapters for all popular parsers are provided
– Future parsers require just a small adapter class

• Once built, documents are not tied to their build tool

SAXBuilder(String parserClass, boolean validate);
DOMBuilder(String adapterClass, boolean validate);

The Output Process

• A Document can be written using any output tool
– org.jdom.output.XMLOutputter tool writes

the document as XML
– org.jdom.output.SAXOutputter tool

generates SAX events
– org.jdom.output.DOMOutputter tool creates

a DOM document (coming soon)
– Any custom output tool can be used

• To output a Document as XML:

• For machine-consumption, pass optional parameters
– Zero-space indent, no new lines

XMLOutputter outputter = new XMLOutputter();
outputter.output(doc, System.out);

outputter = new XMLOutputter("", false);
outputter.output(doc, System.out);

Pretty Printer
import java.io.*;
import org.jdom.*;
import org.jdom.input.*;
import org.jdom.output.*;

public class PrettyPrinter {
public static void main(String[] args) {

// Assume filename argument
String filename = args[0];
try {

// Build w/ SAX and Xerces, no validation
Builder b = new SAXBuilder();
// Create the document
Document doc = b.build(new File(filename));

// Output as XML to screen
XMLOutputter outputter = new XMLOutputter();
outputter.output(doc, System.out);

} catch (Exception e) {
e.printStackTrace();

}
}

}

The DocType class

• A Document may have a DocType

• This specifies the DTD of the document
– It's easy to read and write

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

DocType docType = doc.getDocType();
System.out.println("Element: " +

docType.getElementName());
System.out.println("Public ID: " +

docType.getPublicID());
System.out.println("System ID: " +

docType.getSystemID());

doc.setDocType(
new DocType("html", "-//W3C...", "http://..."));

The Element class

• A Document has a root Element:

• Get the root as an Element object:

• An Element represents something like web-app
– Has access to everything from the open
<web-app> to the closing </web-app>

<web-app id="demo">
<description>
Gotta fit servlets in somewhere!

</description>
<distributable/>

</web-app>

Element webapp = doc.getRootElement();

Playing with Children

• An element may contain child elements

• getChild() may throw NoSuchElementException

// Get a List of direct children as Elements
List allChildren = element.getChildren();
out.println("First kid: " +

allChildren.get(0).getName());

// Get all direct children with a given name
List namedChildren = element.getChildren("name");

// Get the first kid with a given name
Element kid = element.getChild("name");

// Namespaces are supported
kid = element.getChild("nsprefix:name");
kid = element.getChild("nsprefix", "name");

Playing with Grandchildren

• Grandkids can be retrieved easily:

• Future JDOM versions are likely to support XPath

<linux-config>
<gui>

<window-manager>
<name>Enlightenment</name>
<version>0.16.2</version>

</window-manager>
<!-- etc -->

</gui>
</linux-config>

String manager =
root.getChild("gui")

.getChild("window-manager")

.getChild("name")

.getContent();

Managing the Population

• Children can be added and removed through List
manipulation or convenience methods:

List allChildren = element.getChildren();

// Remove the fourth child
allChildren.remove(3);

// Remove all children named "jack"
allChildren.removeAll(

element.getChildren("jack"));
element.removeChildren("jack");

// Add a new child
allChildren.add(new Element("jane"));
element.addChild(new Element("jane"));

// Add a new child in the second position
allChildren.add(1, new Element("second"));

Making Kids

• Elements are constructed directly, no factory method
needed

• Some prefer a nesting shortcut, possible since
addChild() returns the Element on which the child
was added:

• A subclass of Element can be made, already
containing child elements and content

Element element = new Element("kid");

Document doc = new Document(
new Element("family")

.addChild(new Element("mom"))

.addChild(new Element("dad")
.addChild("kidOfDad")));

root.addChild(new FooterElement());

Making the linux-config Document

• This code constructs the <linux-config> seen
previously:

Document doc = new Document(
new Element("linux-config")

.addChild(new Element("gui")
.addChild(new Element("window-manager")

.addChild(new Element("name")
.setContent("Enlightenment"))

.addChild(new Element("version")
.setContent("0.16.2"))

)
);

Getting Element Attributes

• Elements often contain attributes:

• Attributes can be retrieved several ways:

• getAttribute() may throw NoSuchAttributeException

<table width="100%" border="0"> </table>

String value =
table.getAttribute("width").getValue();

// Get "border" as an int, default of 2
int value =

table.getAttribute("border").getIntValue(2);

// Get "border" as an int, no default
try {

value =
table.getAttribute("border").getIntValue();

}
catch (DataConversionException e) { }

Setting Element Attributes

• Element attributes can easily be added or removed

// Add an attribute
table.addAttribute("vspace", "0");

// Add an attribute more formally
table.addAttribute(
new Attribute("prefix", "name", "value"));

// Remove an attribute
table.removeAttribute("border");

// Remove all attributes
table.getAttributes().clear();

Element Content

• Elements can contain text content:

• The content is directly available:

• And can easily be changed:

<description>A cool demo</description>

String content = element.getContent();

// This blows away all current content
element.setContent("A new description");

Mixed Content

• Sometimes an element may contain comments, text
content, and children

• Text and children can be retrieved as always:

• This keeps the standard uses simple

<table>
<!-- Some comment -->
Some text
<tr>Some child</tr>

</table>

String text = table.getContent();
Element tr = table.getChild("tr");

Reading Mixed Content

• To get all content within an Element, use
getMixedContent()
– Returns a List containing Comment, String, and
Element objects

List mixedContent = table.getMixedContent();
Iterator i = mixedContent.iterator();
while (i.hasNext()) {

Object o = i.next();
if (o instanceof Comment) {

// Comment has a toString()
out.println("Comment: " + o);

}
else if (o instanceof String) {

out.println("String: " + o);
}
else if (o instanceof Element) {

out.println("Element: " +
((Element)o).getName());

}
}

The ProcessingInstruction class

• Some documents have ProcessingInstructions

• PIs can be retrieved by name and their "attribute"
values are directly available:

• All PIs can be retrieved as a List with
doc.getProcessingInstructions()
– For simplicity JDOM respects PI order but not the

actual placement

• getProcessingInstruction() may throw
NoSuchProcessingInstructionException

<?cocoon-process type="xslt"?>

ProcessingInstruction cp =
doc.getProcessingInstruction(

"cocoon-process");
cp.getValue("type");

Namespaces

• Namespaces are a DOM Level 2 addition
– JDOM always supports even with DOM Level 1

parsers and even with validation on!

• Namespace prefix to URI mappings are held in the
Document object
– Element knows prefix and local name
– Document knows prefix to URI mapping
– Lets Elements easily move between Documents

• Retrieve and set a namespace URI for a prefix with:

• This mapping applies even for elements added
previously

String uri = doc.getNamespaceURI("linux");
doc.addNamespaceMapping(
"linux", "http://www.linux.org");

Using Namespaces

• Elements have "full names" with a prefix and local
name
– Can be specified as two strings
– Can be specified as one "prefix:localname"

string

• Allows apps to ignore namespaces if they want.

• Element constructors work the same way.

kid = elt.getChild("JavaXML", "Contents");
kid = elt.getChild("JavaXML:Contents");
kid = elt.getChild("Contents");

List Details

• The current implementation uses LinkedList for
speed
– Speeds growing the List, modifying the List
– Slows the relatively rare index-based access

• All List objects are mutable
– Modifications affect the backing document
– Other existing list views do not see the change
– Same as SQL ResultSets, etc.

Exceptions

• JDOMException is the root exception
– Thrown for build errors
– Always includes a useful error message
– May include a "root cause" exception

• Subclasses include:
– NoSuchAttributeException
– NoSuchElementException
– NoSuchProcessingInstructionException
– DataConversionException

Future

• There may be a new high-speed builder
– Builds a skeleton but defers full analysis
– Use of the List interface allows great flexibility

• There could be other implementations outside
org.jdom
– The should follow the specification
– The current implementation is flexible
– We don't expect alternate implementations to be

necessary

Get Involved

• Download the software
– http://jdom.org

• Read the specification
– Coming soon

• Sign up for the mailing lists (see jdom.org)
– jdom-announce
– jdom-interest

• Watch for JavaWorld and IBM developerWorks articles
– http://www.javaworld.com
– http://www.ibm.com/developerWorks

• Help improve the software!

